Quasisymmetric structures on surfaces
نویسندگان
چکیده
We show that a locally Ahlfors 2-regular and locally linearly locally contractible metric surface is locally quasisymmetrically equivalent to the disk. We also discuss an application of this result to the problem of characterizing surfaces embedded in some Euclidean space that are locally bi-Lipschitz equivalent to a ball in the plane. In memoriam: Juha Heinonen (1960 2007)
منابع مشابه
6 S ep 2 00 7 Quasisymmetric structures on surfaces ∗
We show that a locally Ahlfors 2-regular and locally linearly locally contractible metric surface is locally quasisymmetrically equivalent to the disk. We also discuss an application of this result to the problem of characterizing surfaces in some Euclidean space that are locally bi-Lipschitz equivalent to an open subset of the plane.
متن کاملQuasisymmetric Sewing in Rigged Teichmüller Space
One of the basic geometric objects in conformal field theory (CFT) is the moduli space of Riemann surfaces whose boundaries are “rigged” with analytic parametrizations. The fundamental operation is the sewing of such surfaces using the parametrizations. We generalize this picture to quasisymmetric boundary parametrizations. By using tools such as the extended λ-lemma and conformal welding we pr...
متن کاملA Complex Structure on the Moduli Space of Rigged Riemann Surfaces
The study of Riemann surfaces with parametrized boundary components was initiated in conformal field theory (CFT). Motivated by general principles from Teichmüller theory, and applications to the construction of CFT from vertex operator algebras, we generalize the parametrizations to quasisymmetric maps. For a precise mathematical definition of CFT (in the sense of G. Segal), it is necessary th...
متن کاملSkew row-strict quasisymmetric Schur functions
Mason and Remmel introduced a basis for quasisymmetric functions known as the row-strict quasisymmetric Schur functions. This basis is generated combinatorially by fillings of composition diagrams that are analogous to the row-strict tableaux that generate Schur functions. We introduce a modification known as Young row-strict quasisymmetric Schur functions, which are generated by row-strict You...
متن کاملA Note on Three Types of Quasisymmetric Functions
In the context of generating functions for P -partitions, we revisit three flavors of quasisymmetric functions: Gessel’s quasisymmetric functions, Chow’s type B quasisymmetric functions, and Poirier’s signed quasisymmetric functions. In each case we use the inner coproduct to give a combinatorial description (counting pairs of permutations) to the multiplication in: Solomon’s type A descent alg...
متن کامل